
Feature Selection Techniques

March 7, 2022

1 Feature Selection Techniques

1.1 Introduction to Feature Selection

In machine learning and modeling, it’s very common to split a single feature into several features,
such hash encoding, one-hot encoding, embedding, and so on. Even though we are suppose to extract
more information from the features by splitting them, there are concerns of a rapidly increasing
dimension on features. For example, suppose we have 100 categorical features and each of them
contains 200 classes. If we perform one-hot encoding to this dataset, we are expected to have 20,000
features, which seems totally insane for any human data scientist.

Instead of trapping into this problem of dimension, several techniques were developed for dimension
requction. One of the most important goal is that before we delete some useless dimensions, we
must first know the rank of the importance of the features. In this quick-note, we are going to look
through several approcaches that is commonly used for feature selection and dimension reduction.

Before we begin, let’s first import the functions we are going to use.

[1]: from featimp import *
import warnings
warnings.filterwarnings('ignore')

1.2 Common Feature Selection Algorithms

1.2.1 Spearman Rank Correlation

Spearman rank correlation is the most common algorithm for calculating the dependency of two
arrays. We can use this algorithm for computing the correlation between each xk and y and then
rank the importance of the xks on y.

Suppose we have two arrays a and b of the same length, then the spearman rank correlation is
defined by,

ρ = 1− 6
∑

d2i
n (n2 − 1)

Where di here is the element-wise substraction between a and b.

di = r(i)a − r
(i)
b

1

However, a and b are not just ordinary arrays. They should actually be the ranking array of them
self. We can call the function scipy.stats.rankdata for getting the elements replaced by ranks
of an array. To test our result, we used the toy dataset sklearn.datasets.load_wine for feature
selection and plots. And the plot_rank_top5 will plot the top 5 important features with the highest
correlations.

[2]: rank = test_case_spearman()
plot_rank_top5(rank, "Spearman Rank Correlation")

1.2.2 Principal component analysis (PCA)

PCA is a commonly seen algorigthm for dimension reduction. The goal of PCA is to find the
principal component of a matrix. Because we have ordered the singular value so that,

σ1 ≥ σ2 ≥ · · · ≥ σr

then the express in the front is more significant for the matrix X compared with later expressions
(this is just a easy way to think about and definitely not a rigorous proof). Then we can reserve
the first p dimension to get an approximation of matrix X.

X ≈ σ1u⃗1v⃗
T
1 + σ2u⃗2v⃗

T
2 + · · ·+ σpu⃗pv⃗

T
p

By this mean, we can reduce a r-dimension matrix to p dimensions. This algorithm works well
when we have small or medium datasets. For a large dataset, this is not the best way to conduct
the PCA of a matrix. The pseudo code for the PCA algorithm is,

2

For feature selection, we don’t have to get the final projected matrix because then the columns will
have no practical meanings. Instead, we use the eigenvalues of the covariance matrix C to show
how important a feeature is. The eigenvalues explain how much the features cover of the vatiance,
which can indicate the importance of the features in the original X space.

[3]: rank = test_case_pca()
plot_rank_top5(rank, "PCA")

1.2.3 Maximum Relevance - Minimum Redundancy (mRMR)

mRMR is another algorithm that simply considers the redundancy and dependency of a feature.
The index of mRMR is created by the revalance of the feature xk on y reduces the summerization of
redundancy the feature xk on all the other xjs. The goal is to find a feature that has the maximized
dependency on y and the minimized redundancy on the other xjs.

3

In this case, we have to calculate the depedencies and requndancies based on mutual information
I, which can be called through the sklearn.feature_selection.mutual_info_classif package.
We should keep in mind that this package can only be used for categorical features so that if we
have continuous features, we can to use spearman correlcation to replace I.

JmRMR (xk) = I (xk, y)−
1

|S|
∑
xj∈S

I (xk, xj)

[5]: rank = test_case_mRMR()
plot_rank_top5(rank, "mRMR")

4

1.2.4 Permutation and Drop Column

Permutation and drop column are two model-based techniques that used for feature selection. The
ideas of them are quite similar. For drop column feature importsance, we first drop the column we
want to know xk from the dataset, and then retrain the model based on the new dataset. Because
we can discover a reduction of matrics we select, we are then able to know how important that
feature is. For permutation, the idea is quite similar, but we don’t actually remove the feature from
our dataset. Instread, we take the permutation of that feature and then re-train the model. If we
can observe a large change in the matrics, we can say that feature is important.

The example of permutation feature importance based on the house rent data is,

[6]: rank = test_case_permutation()
plot_rank_top5(rank, "permutation")

And the example of drop-column feature importance based on the house rent data is,

[7]: rank = test_case_drop_column()
plot_rank_top5(rank, "Drop Column")

5

1.2.5 OLS Coefficients

A not so good feature importance is that we can first conduction a multivariate linear regression of
features on y and then rank them based on the absolute value of their coefficients. This importance
is not that good becuase we can only have the uniformed result if we normalized the features in
the fiest place. However, for some categorical features, it makes no sense to normalize them before
selection, which makes this technique limited in practice.

[8]: rank = test_case_OLS()
plot_rank_top5(rank, "OLS")

6

1.2.6 Comparing Different Techniques

If we compare different techniques together, we can easily observe that different feature selection
techniques yields to different results. In our results for linear regression, random forest, and gradient
boosting with 5-fold cross validation, techniques of PCA, mRMR, drop-column shows a relatived
strong ability in reducing the mean square error, and spearman rank correlcation is not that good
compared with them, but permutation and OLS feature importance turns out to be relatively not
well on finding the features that best reduce the mean square error.

[6]: warnings.simplefilter(action='ignore', category=FutureWarning)
plot_cv_scores()

7

1.2.7 Shap

Another technique called SHAP can also be used for feature selection, but we are not going to dive
into that topic in this note. This is a package called shap and we will use that package for getting
the SHAP feature importance. An example should be as follows.

[2]: plot_shap()

1.2.8 Comparing Techniques with Shap

Then finally in this part, we can use SHAP as a benchmark to tell which technique performs well.
And the conclusion is quite similar. We can find out in this case that SHAP performs really well in
feature selection.

[7]: plot_cv_scores(shap=True)

8

https://github.com/slundberg/shap

1.3 Auto Feature Selection Algorithm

In this section, we are going to introduce an algorithm called auto feature selection (AFS). Consider
a situation that we have 100,000 features and we don’t know how many featrues we should select
for building a good model, then how can we select the best number of remaining features k. The
stepwise idea is as follows,

• Put all the features in the model and get a validation score
• Loop:

– Use a festure selection technique to rank all the features
– Drop the least important feature from out dataset
– Retrain the model based on the new dataset with column dropped and get a validation

score
– Compare the current validation score with the last validation score we retrieve

∗ If we have an absolute difference higher than our tolerance tor, we should stop
∗ If we have an absolute difference lower than our tolerance tor, we should continue

and drop more columns
• End loop.
• Get how many features we finally have, and let it be k.

Then, let’s perform AFS to OLS feature selection and PCA feature selection as follows,

[2]: auto_feature_selection("ols_score", tor=0.06)

[log] diff: 0.06705485714285714, # of removed features: 1

[2]: (13,
['proline',
'magnesium',
'malic_acid',
'hue',
'alcalinity_of_ash',
'color_intensity',
'nonflavanoid_phenols',

9

'proanthocyanins',
'alcohol',
'ash',
'total_phenols',
'od280/od315_of_diluted_wines',
'flavanoids'])

[3]: auto_feature_selection("pca_score", tor=0.06)

[log] diff: 0.037557396825396834, # of removed features: 1
[log] diff: 0.004637857142857131, # of removed features: 2
[log] diff: 0.004791698412698407, # of removed features: 3
[log] diff: 0.004308111111111103, # of removed features: 4
[log] diff: 0.003332968253968255, # of removed features: 5
[log] diff: 0.003851888888888877, # of removed features: 6
[log] diff: 0.023608174603174596, # of removed features: 7
[log] diff: 0.005144936507936508, # of removed features: 8
[log] diff: 0.0036752222222222325, # of removed features: 9
[log] diff: 0.012842301587301569, # of removed features: 10
[log] diff: 0.0272032380952381, # of removed features: 11
[log] diff: 0.1676884786366883, # of removed features: 12

[3]: (2, ['od280/od315_of_diluted_wines', 'proline'])

From the result above, we can tell that with the same tolerance of 0.06, the PCA technique selects
2 features, but the OLS coefficient technique selects 13 features. This means that PCA is much
more efficient than OLS coefficients for feature selection.

Note that in this case, we also implement the other feature selection techniques and you should
refer to featimp.py for more information.

1.4 Confidence Interval for Feature Importance

We can also get the confidence interval for each feature by taking a random part of X and y (we
take 80% with shuffling in our example) and then train by that partical data to get sightly different
importances. Based on these importances for each feature, we are able to derive the confidence
intervals for each feature. The example of OLS coefficients and PCA are as follows, and we also
implement some other techniques which can be found in featimp.py.

[2]: scores, feature_names = plot_importance_confidence("ols")
rank = get_confidence_intervals(scores, feature_names)
plot_confidence_interval(rank)

10

[3]: scores, feature_names = plot_importance_confidence("pca")
rank = get_confidence_intervals(scores, feature_names)
rank.sort_values('mean', ascending=False, inplace=True)
plot_confidence_interval(rank.iloc[5:])

11

	Feature Selection Techniques
	Introduction to Feature Selection
	Common Feature Selection Algorithms
	Spearman Rank Correlation
	Principal component analysis (PCA)
	Maximum Relevance - Minimum Redundancy (mRMR)
	Permutation and Drop Column
	OLS Coefficients
	Comparing Different Techniques
	Shap
	Comparing Techniques with Shap

	Auto Feature Selection Algorithm
	Confidence Interval for Feature Importance

