
Project README file
This is Yufeng Xing's Readme file.

Readme Instructions

We will manually review your file looking for:

A summary description of your project design. If you wish to use grapics, please simply use
a URL to point to a JPG or PNG file that we can review

Any additional observations that you have about what you've done. Examples:

What created problems for you?
What tests would you have added to the test suite?
If you were going to do this project again, how would you improve it?
If you didn't think something was clear in the documentation, what would you
write instead?

Summary Description

1. Part 1 - gRPC Basic Services

In this part, there are 5 methods provided by the server,

PutFile is the method to store files on the server
GetFile is the method to fetch files from the server
RemoveFile is the method to delete files from the server
ListFile is the method to list all files on the server, the listed information includes
filename fileName and modified time mtime
GetStatus is the method to get the status of a file on the server, the information includes
filename fileName , modified time mtime , and created time ctime

In the PutFile method and GetFile method, because we have to get streamed data from local
or the remote server, a stream message for file transformation called Data is implemented in
these methods. What's more, beause we have multiple files on the server, we also have a
message called FileList which contains a repeated type FileAck message. The FileAck
message is defined as the acknowledgement of the file, which contains the file information
fileName and mtime from the server.

When we fetch a file from the server, the client should first send a request message with the file
name fileName it would like to fetch. This file name is a relative location and it should be
resolved by the WrapPath function on the server. Then the method GetFile in the server stub
is called and the server should check whether or not this file exists by file status calls. The gRPC's
ClientReader should be called in the client and ServerWriter should be called from the server
in order to maintain a send/recv data stream between the client and the server.

When we want to store a file on the server, we can have a similar procedure. We can use the
client for sending the file, but we have to rewrite the logic of sending the data. Because in the
fetching method, the ofs end is set to maintaining the send/recv stream. This brings us a
problem because the server don't know the fileName and the fileSize information. So it
doesn't know what is the file name for storage and when it could stop receiving the data. In
order to deal with these problems, before we send the file data we wish to store, we have to send
the fileName and the fileSize in the first two bucket (in our implementation, a data block of
6200 bytes in the data stream is called a bucket). The server will store the file and after it
finishes, it will send a response called FileAck containing the basic file information containing
the file name and the modified time mtime .

The implementation of listing the file method ListFile is a littile bit tricky because we use a
repeated proto3 data type for message FileAck so that we can list file informations for
multiple files. In this method, we have to traverse the whole dictionary and output the
information of all the file in this directory. We don't need to manage the nested directories
because it is not required by the instruction. The repeated FileAck type in the FileList data
type is named by info and it should be called by add_info for adding more data in this type.
The add_info function will return a pointer pointing to the FileAck data type and we can then
assign the corresponding data of each file in this type.

Finally, the delete method and the status method are quite simple becaue they only requires
simple request-respond scenarios. RemoveFile is responsible for finding the file in the request
on the server, and if the file exists, the server will delete the file. The GetStatus is even easier
because it will not modify any files on the server. It will only check whether we have a file on the
server, and if we have this file, we will send the file information including the file name
fileName , the file size fileSize , the file modified time mtime , and the file creation time
ctime .

2. Part 2 - Distribution System

In the part 2, we have to implement a distributed system. In this part, we have to support
multiple client communications with the server and we should be able to properly lock the files
for synchronization. So the server in this part should be able to know if a file is already locked by
some other clients and which lock the file has. To deal with these problems, we have to maintain
two mappings, one is called the ID table IDT and it is used for mapping the fileName to the
ClientID . The other table is called the mutex table MUT and it is used for mapping the
fileName to the file mutex.

This locking method is implemented by the WriteLock method and it can be used to check
whether the lock of a file is aquired by some other clients. This method will first check if this file is
acquired by some other client.

If it is acquired by other client, we will abandon this lock acquirement. The conditions will be,

a file name in IDT exists

the corresponding ID in the IDT not match the current ID

If the file lock is acquired by the current client, we will be okay.

a file name in IDT exists
the corresponding ID in the IDT matches the current ID. The conditions will be,

FileAck* fileInfo = respond->add_info();

fileInfo->set_name(fileName);

fileInfo->set_mtime(fileStatus.st_mtime);

However, if this file is not acquired by some other clients, we can then allocate or acquire a lock to
this client. The conditions will be,

a file name in IDT doesn't exist

To speed up the mappings of initially existing files on the server, we can also initialize the MUT in
the constructor DFSServiceImpl where we will assign a mutex for each of the existing file on the
server.

When we change any files on the server, the HandleCallbackList will be called by the inotify
and we have to find out whether we have to update the file in this method. In this method, we
have to travese all the files in the current remote directory. The remote server will call
CallbackList , which is handled by the ProcessCallback function in our server. It will return a
list of file information on the server to the client. Then there will be three cases,

We haven't got this file locally: fetch it from the server
The file exists locally but the local mtime > remote mtime: delete remote file and store it to
the server
The file exists locally but the local mtime < remote mtime: delete local file and fetch it from
the server

Created Problems

1. Problem 1 - Set Deadlines

To maintain the connection between the server and the client, the client has to set a deadline
time. After deadline is set in the client, the client will be cancelled in the future schedule if the
server doesn't response in a short period of time. The server should check whether the context in
the client is cancelled and if there's no respond, we should reply with DEADLINE_EXCEEDED error
code.

To implement this deadline in the client, we have to set the context deadline by set_deadline
method,

And in the server, we will check if the context is cancelled by,

2. Problem 2 - Using dfs_log

As it is mentioned in the project direction readme.md file, a logging utility dfs_log is provided in
this assignment for tracking the system outputs and errors, and it can also be used for
debugging. In my implementation LL_SYSINFO and LL_ERROR are used quite often. These log
levels can be treated similar to cout and endl .

For example, if we want to simply output Helloworld as the system output, we can directly use
the output log stream like,

The other debugging log levels like LL_DEBUG , LL_DEBUG2 , and LL_DEBUG3 are also used for
implementing the callback functions in part 2 but in general, they are not as frequently used as
LL_SYSINFO and LL_ERROR .

3. Problem 3 - File I/O

In the previous projects, we have done the file input or output mainly by fopen or open because
we used C in those projects. Now, it's a better idea to use ifstream for file inputs and ofstream
for file outputs because these methods are much easier to use, and it is quite useful in
implementing the store file method and the fetch file method.

We can create an input file stream by,

using std::chrono::system_clock;

using std::chrono::milliseconds;

context.set_deadline(system_clock::now() + milliseconds(deadline_timeout));

if (status.error_code() == StatusCode::DEADLINE_EXCEEDED) {

 // log

 dfs_log(LL_ERROR) << "Server timeout";

 return StatusCode::DEADLINE_EXCEEDED;

}

// check if timeout

if (context->IsCancelled()) {

 // log

 dfs_log(LL_ERROR) << "Request expired, connection close.";

 // return error status

 return Status(StatusCode::DEADLINE_EXCEEDED, "Request expired");

}

dfs_log(LL_SYSINFO) << 'Helloworld';

ifstream ifs(filePath);

And then the bytesSend size of data should be looply read into the buffer (which is used to
temporarily hod the file data),

After reading this file to the last bit and send it to the other end, we have to close the input file
stream by,

The output stream can be used in a similar way. First, we will create an output file stream by,

Then, we can open the out put file with the filg ios::out and ios::trunc . ios::out means
that we will allow writing permission to that file and ios::trunc means that we will ignore and
replace the current existing file if there is one exists and we will create a new file for writing,

After writing to this file, we have to close the output file stream by,

4. Problem 4 - Getting File Information

In this project, we have to check the file existence, file size fileSize , the modified time mtime ,
and the creation time ctime in an efficient way. And in C++, the simplest way to do so is by
calling the stats function. For example, we can get the information of a file in the filePath by,

The structure named fileStatus will then contain all the information we need including the
ctime by fileStatus.st_ctime , and the mtime by fileStatus.st_mtime . Note that these
valuse are in time_t type and it is actually a int64 type. So that we can simplying using these
values as the 64-byte integers.

ifs.read(buffer, bytesSend);

ifs.close();

ofstream ofs;

ofs.open(filePath, ios::out|ios::trunc);

ofs.close();

struct stat fileStatus; // structure for file info

stat(filePath.c_str(), &fileStatus);

struct stat {

 dev_t st_dev; /* ID of device containing file */

 ino_t st_ino; /* inode number */

 mode_t st_mode; /* protection */

 nlink_t st_nlink; /* number of hard links */

 uid_t st_uid; /* user ID of owner */

 gid_t st_gid; /* group ID of owner */

However, if the file doesn't not exist in the filePath , then this fuction will return -1 . So the
existence of the file can be simply checked by,

5. Problem 5 - Traverse Directory

We should also be able to travese all the files in a given directory for the listing method, and then
we should be able to get all the file objects in this directory. To open a given directory, we can use
a DIR type pointer named dir and then call opendir to open the given mount_path by,

Then, we have to repeatedly call the readdir function for getting file objects (called entry) from
this directory until we get NULL by,

Then, the name of each entiry can be easily get by accessing the d_name ,

In Linux, all the file descriptors are stored as inodes and we can check the entity type we get by
accessing its st_mode information. The S_ISDIR function can be called to check whether the
current entity is a directory. And if it is a directory, according to the instructions, we cam simply
skip this entity.

Problem 6 - CRC Checksum

 dev_t st_rdev; /* device ID (if special file) */

 off_t st_size; /* total size, in bytes */

 blksize_t st_blksize; /* blocksize for file system I/O */

 blkcnt_t st_blocks; /* number of 512B blocks allocated */

 time_t st_atime; /* time of last access */

 time_t st_mtime; /* time of last modification */

 time_t st_ctime; /* time of last status change */

};

// if file not found

if (stat(filePath.c_str(), &fileStatus) == -1) {

 // log

 dfs_log(LL_ERROR) << "ERROR: " << filePath << " file not found\n";

 // return status code StatusCode::NOT_FOUND

 return Status(StatusCode::NOT_FOUND, "File Not Found");

}

DIR *dir;

dir = opendir(mount_path.c_str());

while ((entry = readdir(dir)) != NULL) {

 ...

}

fileName = entry->d_name;

To check whether the file content is modified, we can also use a CRC checksum. Even though the
mtime can be used to determine if we should fetch or store, but it will be a burden because we
mtime can be updated without any file modifications. Therefore, in order to determine whether a
file has already existed, we can call dfs_crc_checksum which is already provided. We can get a
CRC checksum result by

So when we fetch or store the files, we will also send the checksum to the other end. If the CRC
checksum value on the server is the same as the value on the client, the fetch or store operations
will be necessary because the file is the same on both ends. Therefore, the server will send back
the status code ALREADY_EXISTS by the instructions. However, if the checksum value is different,
we have to update the file to its newest state.

Tests

Compile and Move Testing Files

For part 1,

crc_checksum = (int) dfs_file_checksum(filePath, &crc_table);

$ make protos

$ make part1

$ make part2

$ cd ./mnt/server/sample-files/

$ cp * ..

$ cd -

/* Test storing the file */

// client

$ cd ./mnt/client

$ echo "Helloworld" > test.txt

$ cd -

$./bin/dfs-client-p1 store test.txt

// server

$./bin/dfs-server-p1

/* Test storing the a not existing file */

// client

$./bin/dfs-client-p1 store hello.txt

// server

$./bin/dfs-server-p1

/* Test storing the an empty file */

// client

$ cd ./mnt/client

$ echo "" > hello.txt

$ cd -

For part 2,

$./bin/dfs-client-p1 store hello.txt

// server

$./bin/dfs-server-p1

/* Test fetching the file */

// client

$./bin/dfs-client-p1 fetch gt-einstein.jpg

// server

$./bin/dfs-server-p1

/* Test fetching a not existing file */

// client

$./bin/dfs-client-p1 fetch file-not-found

// server

$./bin/dfs-server-p1

/* Test deleting the file */

// client

$./bin/dfs-client-p1 delete gt-einstein.jpg

// server

$./bin/dfs-server-p1

/* Test deleting a not existing file */

// client

$./bin/dfs-client-p1 fetch file-not-found

// server

$./bin/dfs-server-p1

/* Test listing the files */

// client

$./bin/dfs-client-p1 list

// server

$./bin/dfs-server-p1

/* Test getting the file status */

// client

$./bin/dfs-client-p1 stat gt-einstein.jpg

// server

$./bin/dfs-server-p1

/* Test getting the status of a not existing file */

// client

$./bin/dfs-client-p1 stat file-not-found

// server

$./bin/dfs-server-p1

// server

Next Improvement

I think part 1 is perfectly handled with, but we can make it better for the synchronization of part
2. In the part 2, the gradescope is not responsible for all the goals mentioned in part 2's
instruction and there are several improvements we can make in the future.

1. File Creation

When we create a new file locally, it will not be stored directly to the server. But if we create a new
file on the server, it will immediately be fetched to the client.

2. File Deletion

This is quite opposite from our goals because when a client delete a file locally, we should also
delete the related file on the server. However, in our implementation, the server file will not be
deleted.

All the problems above are the possible improvements in the future.

Known Bugs/Issues/Limitations

1. Part 1 Empty File Testing Problem

I think the testing for part one should add a test about storing an empty file on the server. When I
test this locally, I run into bugs because my server never quits and the clients will be interrupted
by the deadline. But my code can still pass

$./bin/dfs-server-p2

// Client 1

$./bin/dfs-client-p2 mount

// Client 2

$./bin/dfs-client-p2 mount

// Terminal 1

$ cd ./mnt/client

$ echo "Test again" > test.txt

$ mkdir -p hello

$ echo "a testing file" > new.txt

$ rm test.txt

$ rm -rf hello

// Terminal 2

$ cd ./mnt/server

$ echo "Test again" > test.txt

$ mkdir -p hello

$ echo "a testing file" > new.txt

$ rm test.txt

$ rm -rf hello

2. Part 1&2 Directory Problem

In the beginning, the testing files are listed in the /mnt/server/sample_files directory and it
makes no sense for doing so because these files can be directly put into the root directory
/mnt/server . I figure this out by checking the piazza and some other students have the same
confusion as me. I think it would be a better idea to put all the testing files in the root directory
/mnt/server of the server in the beginning.

3. Part 2 Readme Error

In the readme instruction, the checksum function is mistakenly expressed by,

However, it should be,

The instructions in the servernode are good but I think we should also update the readme
instructions.

This issuse is also mentioned in the piazza.

4. Changing Goals in Part 2

This is just a general suggestion on the testing instances of the part 2. I am quite sure my code is
not reponsible for all the features listed in the instructions, and it will take more time for me if I
keep implementing these features. I think you can either make the goals simpler by changing the
instructions because you will not test all the case, or you should develop the testing cases further
more because the current tests are obviously not enough.

References

1. gRPC deadlines
2. proto3
3. gRPC Starter
4. gRPC Examples
5. File stat
6. File open
7. ifstream
8. ofstream
9. List files in a directory

10. opendir
11. readdir
12. inode
13. inotify
14. Piazza

std::uint32_t crc = file_checksum(filepath, this->crc_table);

std::uint32_t server_crc = dfs_file_checksum(filepath, &this->crc_table);

	Project README file
	Readme Instructions
	Summary Description
	1. Part 1 - gRPC Basic Services
	2. Part 2 - Distribution System

	Created Problems
	1. Problem 1 - Set Deadlines
	2. Problem 2 - Using dfs_log
	3. Problem 3 - File I/O
	4. Problem 4 - Getting File Information
	5. Problem 5 - Traverse Directory
	Problem 6 - CRC Checksum

	Tests
	Compile and Move Testing Files
	For part 1,
	For part 2,

	Next Improvement
	1. File Creation
	2. File Deletion

	Known Bugs/Issues/Limitations
	1. Part 1 Empty File Testing Problem
	2. Part 1&2 Directory Problem
	3. Part 2 Readme Error
	4. Changing Goals in Part 2

	References

